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EXECUTIVE SUMMARY

A number of sediment quality guidelines (SQGs) haeen developed for relating chemical
concentrations in sediment to their potential floldgical effects, but there have been few
studies evaluating the relative effectiveness fiédint SQG approaches. Here we apply six
SQG approaches to assess how well they predidtitpxn California sediments. Four of the
SQG approaches were nationally derived indicesviieat established in previous studies (ERM,
LRM, SQGQ1, Consensus), and two were variationsatibnally derived approaches that were
recalibrated to California-specific data (CA LRMda@A ERM). Each SQG approach was
applied to a standardized set of matched chemasitytoxicity data for California and an index
of the aggregate magnitude of contamination (eagan SQG quotient or maximum probability
of toxicity) was calculated. A set of three threlsls for classification of the results into four
categories of predicted toxicity was establishedetich SQG approach using a statistical
optimization procedure. The performance of eacls $@Qproach was evaluated in terms of
correlation and categorical classification accuratile CA LRM had the best overall
performance, but the magnitude of differences assfication accuracy among the SQG
approaches was relatively small. Recalibratingridéces using California data improved
performance of the LRM, but not the ERM. The LRppeoach is more amenable to revision
than other national SQGs, which is a desirabléate for use in programs where the ability to
incorporate new information or chemicals of conasnmportant. As the differences in
performance among indices were generally smalkagieristics such as ease of application,
types of chemicals included in the constituentyaraad feasibility for revision, become
important considerations when selecting a prefeB@& approach.
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INTRODUCTION

Many monitoring programs are conducted to evalahagnical contamination effects on
sediment quality, but interpreting these datafiscdilt (Wenninget al. 2005). The biological
availability of chemicals in sediments is complexi goorly understood. Moreover, the
chemicals are often present in complex mixturesdhadifficult to integrate.

A number of sediment quality guidelines (SQGs)r&dating chemical concentrations to
potential for biological effects have been devethmenerally falling into two classes. The first
is a mechanistic approach, which models the chdrar@hbiological processes that affect
contaminant bioavailability. Current mechanist@®&s are based on equilibrium portioning
theory and apply to selected classes of contansparimarily divalent metals and some types of
nonionic organics (USEPA 2004a, 2004b). While ¢heodels are useful for describing
potential contaminant availability and identifyitige cause of toxicity, mechanistic SQGs are
not available for many contaminants of interest &y correlate poorly with biological effects
under field conditions (Vidal and Bay 2005). Ird@mn, some of the parameters needed to
apply these guidelines (e.g., sediment acid velatillfides and simultaneously extracted metals)
are rarely collected in routine monitoring programs

A more widely used type is empirical SQGs, which gwidelines derived from the statistical
analysis of matched sediment chemistry and bio&gitfects data. Multiple collections of
empirical SQGs that are based on different stasistipproaches have been developed.
Examples of empirical SQG approaches for the mameronment include the effects range-
median (ERM), probable effects level (PEL), apptaedfects threshold (AET), sediment quality
guideline quotient (SQGQ1), and logistic regressimdels (LRM) (Barriclet al. 1988, Fairey

et al. 2001, Fiel@t al. 2002, Longet al. 1995, MacDonal@t al 1996). Consensus guidelines,
which aggregate several different of SQGs havisgralar narrative intent (e.g., median effect),
are an evolution of the empirical approach. Madaoesensus SQGs have been developed for a
some constituents, including metals, PCBs, and P@ésDonaldet al 2000, Swartz 1999,
Vidal and Bay 2005).

It is unclear which empirical SQG approach is nedtdctive for describing the potential for
biological effects associated with chemical contaation. Numerous studies have shown that
each SQG approach has predictive ability with ressfgebiological effects, but most studies
have generally been limited to examination of just or two approaches and often use variable
methods to measure performance (Wenmingl 2005). Longet al (2000) applied ERMs and
PELs to several data sets and observed differatdrpa in predictive ability. Vidal and Bay
(2005) compared five SQG approaches using a contatanset and found large differences in
predictive ability among some approaches, howehar study did not include the logistic
regression approach. Vidal and Bay (2005) alsemesl that comparisons of SQG performance
can be strongly influenced by the selection ofshodds used to classify the results. Existing
studies are inadequate for comparing the performahempirical SQGs because of their limited
scope, lack of comparability in methods, and lacthoesholds derived using a consistent
methodology.
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It is also unclear whether performance of SQGm@oved when they are calibrated to local
conditions. The predictive ability of SQGs to loigical effects has been shown to vary when the
same guidelines are applied to data from differegions (Faireet al. 2001, Longet al. 1998,
Longet al 2006, O’Connoet al. 1998, Vidal and Bay 2005). These variations iriggenance
may be due to differences in the nature of the ebemmixtures between sites or regions,
variations in bioavailability due to geochemicatttars, or differences in the sensitivity of
methods used to measure biological effects. Manah SQG performance among studies
creates uncertainty in determining the threshol8@QG exceedance associated with adverse
impacts on sediment quality. The use of SQGs ataipretation thresholds that are derived or
calibrated relative to site-specific conditions bagn recommended as a way to reduce the
uncertainty of SQG interpretation (Fairetyal 2001, Longet al 2006, Vidal and Bay 2005).

Here we apply six SQG approaches to a large Caldatata set of paired chemistry and toxicity
masurements to assess: 1) which SQG approachreesttp toxicity of California sediments, 2)
whether the ability of SQGs to predict sedimenidibx is improved when the SQGs are
recalibrated to California data, and 3) if perfonoa further improves when the SQGs are
further recalibrated to two subregions within Gaifia.
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METHODS

We assessed the performance of six SQG approaglasplying them to matched chemistry
and toxicity data for California, calculating amd@x of overall contamination based on the mean
SQG quotient or the maximum probability of toxicignd determining the correlation and
categorical classification accuracy. Four of tligGSapproaches were derived in previous
national studies (ERM, LRM, SQGQ1, Consensus) amdvwere variations of nationally derived
SQGs that were recalibrated to California-speciita (CA LRM and CA ERM). SQG
calibration and performance evaluations were cotedLiat two scales in order to investigate the
influence of regional variations in sediment chggdstics: statewide (all California data) and
regional (separate northern and southern Califatata sets).

Data

Paired chemistry and sediment toxicity measurenfeoits California marine embayments were
compiled from 151 dredging, monitoring, and reskattdies conducted in California between
1984 and 2004. The database included stationsrmanme and estuarine embayments located
from 41.94N (Del Norte County, CA, USA) to 31.7H (USA-Mexico international border).
More information on the studies used to populatedhtabase can be found at
http://www.sccwrp.org/data/2006_sqo.html

The data were screened to select information tlaatof high quality and comparable. All
stations were from locations in enclosed bays dodra at subtidal depths and only data from
surficial sediment (top 30 cm or less) were sebkcfBoxicity data were limited to information
from solid-phase 10-d amphipod survival tests usthgpoxynius abroniusr Eohaustorius
estuariusand conducted using standardized methods (USEPA)19%e toxicity data were
further screened to ensure that conventional dadéty objectives were met, including mean
control survival >85% and overlying water ammoroaaentrations below species-specific
criteria (USEPA 1994). Screening steps to seleetristry data for analysis included a review
of the data quality assessment from the study asitige of comparable extraction/digestion
methods, and measurement of a minimum suite oboanants that included multiple metals
and PAHSs.

Standardized sums of PAHs, DDTs, PCBs, and chl@slarere calculated using a consistent
methodology for all samples. Low molecular weiBitHs were calculated as the sum of
acenaphthene, anthracene, biphenyl, naphthaleédjrBethylnaphthalene, fluorene, 1-
methylnaphthalene, 2-methylnaphthalene, 1-methylphthrene, and phenanthrene. High
molecular weight PAHs was the sum of benzo(a)an#me, benzo(a)pyrene, benzo(e)pyrene,
chrysene, dibenz(a,h)anthracene, fluoranthene|greryand pyrene. Total PAHs was the sum
of Low PAH and the High PAH values. Total PCBs &ealculated from the sum of congeners
8, 18, 028, 44, 52, 66, 101, 105, 110, 118, 128, 183, 180, 187, and 195. This sum was
multiplied by 1.72 to estimate the total concembrabf all congeners. Total DDTs represented
the sum of p,p'-DDT, o,p'-DDT, p,p'-DDE, o,p'-DDkp'-DDD, and o,p'-DDD. Total chlordane
was the sum of alpha-chlordane (cis-chlordane)¢lloydane, trans-chlordane, trans-nonachlor,
and gamma-chlordane.
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Data were estimated for values reported as belpartiag limits based on multiple regression
imputation, taking advantage of covariation amdrgrhany chemical and sediment variables.
Imputation produces lesser bias than conventigp@icaches for interpreting nondetect data,
such as substituting zero or one-half of the repgiimit (Helsel 2005). SAS PROC MI (SAS
Institute Inc, North Carolina, USA) was used to utgvalues in a sequential stepwise fashion
by contaminant type. Metal data were estimatesd, fiollowed in order by pesticides, PAHSs,
and PCBs. The stepwise manner in which the grotigata variables were imputed was used
because SAS PROC MiI could not compute all imputatia a single step. The stepwise
procedure also allowed for better control of theadeariables used in the imputations for each
chemical group.

The standardized data set was divided into twoggda facilitate investigation of regional
differences in chemical contamination on SQG pentorce: northern California embayments
north of Pt. Conception and southern California aymients south of Pt. Conception. Each
regional data set was further divided into two joi$: a calibration subset used for index
development and threshold calibration, and an iaddent validation subset used for the
analysis of SQG performance. Approximately ongdtbf the data were used for validation.
The validation samples were selected by first gmogiphe data into one of 8 subregions based on
latitude to ensure even spatial representatiore sBmples within each subregion were then
ranked by the mean mERMq quotient and one thitth@samples systematically sampled from
throughout the mERMq quotient distribution. Addital validation data were obtained from
recent monitoring studies that were not includethainitial data compilation effort. The north
and south validation data sets contained 146 a@dsahples, respectively.

National SQGs

The ERM values used in the analyses were obtanoed fonget al. (1995). The mean ERM
guotient (IMERMQ) for each sample in the data set @gdculated by dividing each chemical
concentration by its respective ERM and averadiegndividual quotients (Longt al. 2000).

The subset of ERM values used to calculate the m@RNMable 1) was the same as that used in
previous mMERMq performance studies (Latgl 2000).

The mean sediment quality guideline quotient 1 (8Q¥3was calculated as described by Fairey
et al (2001). The SQG values used in the analysisigtesllin Table 1.

The Consensus SQG values for PAHs and PCBs wegomidceffect concentrations obtained
from Swartz (1999) and MacDonaddl al (2000), respectively. Values for DDTs, dieldrin,
arsenic, cadmium, chromium, copper, lead, merauckel, silver, and zinc were obtained from
Vidal and Bay (2005). The mean Consensus quotestcalculated by dividing each chemical
concentration by its respective SQG (Table 1) amataging the individual quotients.

The Logistic Regression Model (LRM) approach waseoleon the statistical analysis of paired
chemistry and amphipod toxicity data from studiestghout the U.S. (Fielet al. 1999, 2002).
The logistic model is described by the followingiation:

p: eBO+Bl (X)/ (1 + eBO+B:|. (Xb
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where: p= probability of observing a toxic effect;
BO= intercept parameter;
B1= slope parameter; and,
X= concentration or log concentration of the cloamn

The chemical-specific models used in this studyevised on an analysis of the accuracy for
predicting toxicity for 37 candidate models. Maxl&dr 18 chemicals having low rates of false
positives were selected for use (Table 2). Theimam probability of toxicity obtained from
the individual models (R for each sample was used as the index of ovesatmination.

Regional SQGs

Regionally calibrated versions were developedvar of the national SQG approaches: ERM
and LRM. Regional versions were not developedHterother national SQG approaches
(SQGQ1 and Consensus) because these approachesadeon the inclusion of SQG values
from other sources and cannot be easily recalitbnatdh new data. Three versions of each
regional SQG approach were developed: a statevedgon that was calibrated to data from
throughout California (CA ERM or CA LRM), and twegion-specific versions. The region-
specific versions were calibrated separately ferrtbrthern California (NorCA ERM or NorCA
LRM) and southern California (SoCA ERM or SoCA LRNBta sets.

For the CA ERM variations, local calibration invet¥ calculation of new individual chemical

ERM values. The data were screened to select saxiples (>20% mortality) with chemical
concentrations >2x median concentration of nontsgimples. A separate screening process was
used for each chemical. After screening, the date@ sorted in ascending order and the median
concentration of each chemical was selected athen-specific ERM value. ERM values

were calculated for all chemicals having >10 resandthe screened data set. This resulted in
calculating CA ERM and SoCA ERM values for 27 cheats, and NorCA ERM values for 25
chemicals (Table 1).

California logistic regression models for individiegdemicals were developed for the statewide
and regional California data sets using the metlledsribed in USEPA (2005). These models
were applied to the California calibration datangs«80% control-adjusted amphipod survival as
the definition of a toxic sample. The specific ratsdincluded in the CA LRM, SoCA LRM, and
NorCA LRM approachewere selected from a library of candidate modeds iticluded national
models, as well as models derived using the Caliéodata sets. The selected models were
chosen based on the goodness of fit with the obdgurobability of toxicity (Table 2). Models
with high false positive rates were not included.

Threshold Development

Evaluating the indices with respect to categoritassification accuracy requires identification
of category thresholds for each SQG index. Sudstiolds are generally unavailable for these
SQG approaches or vary in the method of developmEmé thresholds used in this study were
developed for each SQG approach using a consistetiodology so that differences in
performance would reflect inherent differences agnapproaches, rather than variations in how
thresholds were assigned.
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Three thresholds, defining four ranges of SQG in@sxilts, were established for each SQG
approach. Each SQG index range corresponded tofdoar categories of toxicological
response that were based on classification systeetsin other studies (Lorg al. 2006). The
toxicity categories were specific to each test gseand were based on analyses of the minimum
significant difference and magnitude of responszqgnt of control survival) to California
samples (Bagt al 2007). The categories f&r estuariusvere: nontoxic{90% survival), low
toxicity (82-89%), moderate toxicity (59-81%) andintoxicity (<59%). The categories fBx.
abroniuswere: nontoxic (>90% survival), low toxicity (83%), moderate toxicity (70-82%)

and high toxicity (<70%).

The thresholds were selected using a statistidahggation procedure based on maximizing
overall agreement between the SQG index and tgxgeitegories in the calibration data set. The
percent agreement was computed for all possibsedgetiplicate thresholds occurring within a
relatively dense set of possibilities. Mesh sioeoptimization reflected a distance between
possible thresholds values of 5% of the range t& dalues for each indicator. In addition,
distances between individual thresholds within esathwere constrained to be no less than 10%
of the range of data values for each SQG indexes@&ltonstraints ensured that optimization
converged and the resulting thresholds were notlmse to one another. The set of triplicate
thresholds that yielded the highest percent agreemere selected as being optimal.

The optimization procedure was conducted on a sulbske data that contained an even
distribution of samples across toxicity categorigégis step was included in order to minimize
the influence on the optimization results of thews&d sample distribution in the calibration data
set, which contained a higher proportion of nontaad low toxicity samples. The
measurement of percent agreement is sensitiveeteeskdistributions, potentially resulting in
inaccurate thresholds. The threshold selectioa sktt contained 30 randomly selected
calibration samples from each toxicity categoryatdselection and threshold optimization was
bootstrapped 50 times using SAS PROC SURVEY SELEEAY(Institute Inc, North Carolina,
USA) in order to provide a robust collection ofdbholds that reflected variations in the
calibration data. The optimum set of thresholds determined for each iteration and the
median set of thresholds was chosen to be thethnedholds for that SQG approach.

Evaluation of SQG Performance

SQG performance was evaluated by quantifying ttength of association between chemistry
and toxicity in terms of both correlation and catecal classification accuracy. Correlation was
measured as the nonparametric Spearman’s correlaiefficient between the SQG index value
(i.e., mean quotient or,Ry) and percent amphipod mortality. Analyses of gatieal
classification accuracy were based on the frequenitywhich the SQG index category
(determined by applying the thresholds derived ftbencalibration data set) correctly predicted
the measured toxicity response category. All ssedywere conducted using an independent
validation data set that was not used for thresteictlopment.
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Two measures of classification accuracy were catedt percent agreement and weighted
kappa. Percent agreement is the number of sartiyaeare correctly classified and was
calculated as:

A=(NCc/Nt)*100

where: A = percent agreement
Nc = number of samples correctly classified
Nt = total number of samples

Theweightedkappa statisti€Cohen 1960, 1968) Eso measure of agreement between the SQG
predictions and toxicity, but differs in that a stion for chance is applied and partial credgiven
according to the severity of disagreement. Kapemts were based on the linear weighting scheme of
Cicchetti-Allsion (1971)aweightof 1 was assigned to cases of perfect agreement agttaef 1/3,

1/6, and (assigned to disagreements of one, two, or thraeitpxategories, respective\5AS
PROC FREQSAS Institute Inc, North Carolina, USA) was usedalculate the weighted kappa
(Stokeset al. 2000.

A bootstrap resampling approach similar to thatifee threshold development was also used in
calculation of the correlation, percent agreemamnd, weighted kappa values. The reported
correlation and classification accuracy valuestiagemedian of 50 resamples. Thd'90
percentile confidence limits of the bootstrappesites were used to identify the best performing
SQG approaches with respect to correlation andifleestion accuracy. The approach having
the highest values for both correlation and classibn accuracy was selected as the best
performing SQG. The correlation results were gigezater weight when the rankings were
variable among the performance measures in ordairtonize the influence of threshold
selection.
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RESULTS

Different patterns of sediment contamination betw#e northern and southern California data
sets (Table 3), reflecting different anthropogenputs and geology, were apparent. Median
concentrations of most PAH compounds, chromium,rackel were greatest in the north, while
the south data set contained higher concentratibaklordane, copper, DDTs, PCBs, and zinc.
The southern California data set usually contathechighest concentrations of each
contaminant, which may reflect the larger numbedatf in the south data set. An exception
was the presence of the higher chromium and nmketentrations in the north data set, which
was likely due to higher naturally occurring conitations of these elements in northern
California soils.

There was a similar range and distribution of sediintoxicity between the northern and
southern California data sets (Figure 1). Theithstion of the data was skewed towards low
toxicity; approximately 60% of the samples in eaetion had less than 20% mortality and less
than 10% had greater than 60% mortality.

There were large differences in the number of cbhalsiand their threshold concentrations
included in the different SQG indices (Tables 1 ahdThe number of chemicals varied from 9
for the SQGQ1 to 25 for the mMERMQ. Individual cheamhconcentrations for the ERM,
SQGQ1, and Consensus SQGs were similar becausevihlees were often derived from
similar sources. There were often large differerinandividual chemical concentration
between the national and region-specific versidie@ERM. This was especially evident for
PAH compounds, where the national ERM values we2ebfiders of magnitude greater than the
CA ERMs (Table 1).

The categorization thresholds for the SQGs varesmhgaphically (e.g., statewide, north, south).
The largest thresholds were usually obtained fatlsern California data, but the differences
were typically small (Table 4). The SQGQ1 was @areption, having nearly a three-fold
difference between thresholds derived using nonthed southern California data.

Each of the statewide-calibrated SQG approacheslated significantly with amphipod

survival when applied to statewide validation da&pearman correlation coefficients ranged
from 0.35to 0.16 (Table 5), with the CA LRM hagithe highest correlation. Correlations
generally increased when the indices were evalused) the separate north and south data sets,
though CA LRM performed best in both habitats (Eab).

The CA LRM (Table 5) also performed best with rese classification accuracy, when the
indices were applied to the statewide data sety Mde improvement in classification accuracy
was obtained using the CA ERM approach, relatiila¢onational ERM approach. While both
measures of classification accuracy ranked the 8QJf8oaches similarly, the weighted kappa
statistic provided a greater degree of discrimoraamong approaches than did percent
agreement.

When the SQG indices and statewide thresholds exakeiated relative to the regional data sets,
the CA LRM was the only approach with consistehityh classification accuracy and
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correlations (Table 6). The CA ERM also had rekti high classification accuracy for
northern California data and high classificationwacy was also obtained for the ERM and
Consensus for southern California.

Developing thresholds on a regional basis hae letfect overall. Percent agreement scores
across indices were almost identical between tlotdstdeveloped using statewide and regional
data sets (Table 6). However, classification acy(weighted kappa) was improved for the
worst performing SQG approaches, such as SQGQtiaduth and national LRM in the north.

Increased classification accuracy was obtainethiregion-calibrated SQGs in the north
(NorCA LRM and NorCA ERM) compared to statewideHoadted versions (Table 6).
However, no improvement was measured for the appesathat were calibrated to southern
California data (SoCA LRM and SoCA ERM).
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DISCUSSION

While the Pmax, based on the CA LRM, was the bedbpming SQG index, there was
relatively little difference in performance amon@my of the indices. This differs from the
findings of Vidal and Bay (2005) and probably résdtom using thresholds that were selected
using a consistent methodology and calibration data The standardized thresholds allowed
each SQG approach to be evaluated on a level gldigld, so that differences in performance
could be compared without the confounding effedlitierences in threshold selection.

Two of the SQG approaches were recalibrated usalifo@hia data, which had mixed effects.
For the CA LRM, there was a substantive improveneperformance, but performance of the
mean quotients based on the CA ERM, was compatalhat of the national mMERMQ. This
may have resulted from differences in the SQG catlin process. The CA ERMs consisted of
entirely of new values that were derived from ttadifGrnia data set. All available CA ERMs
were used in the quotient calculations. In contfas the CA LRM, the set of models used for
evaluation was selected from a combination of mati@nd California derived models. This
selection process was based on increasing moddhgss of fit and reducing false positives. It
is possible that this additional selection steprionpd the predictive ability of the CA LRM. A
similar selection process was not used for the GMBbecause of differences in derivation
methodology compared to the national ERMs, whichevilased on multiple types toxicity tests
and other biological response values (Lehgl 1995).

The improved performance of the CA LRM may alsoenbgen due to differences in the
composition, magnitude, and bioavailability of sednt contamination in the California data,
relative to the data used for national LRM develepin Regional differences in contamination
and geochemistry have been identified as impoftanors affecting the predictive accuracy of
SQGs (Longet al 2000, Wenningt al. 2005). Since the values used in empirical SQG
approaches are derived from chemistry-toxicitytrefeships in the development data set,
regionally calibrated approaches would be expettdthve greater predictive accuracy.

Use of thresholds calibrated to the north and ssulitegions produced only small increases in
performance relative to the statewide thresholdse relatively small differences in regional
performance are probably related to the heterogeneature of sediment contamination. Even
though there are differences in overall patternraadnitude of contamination in the northern
and southern California data sets, contaminatigtepes within each region is highly diverse due
to the presence of multiple waterbodies and comtantiinputs from a multitude of sources.

Because the performance difference among SQG maes small, characteristics such as
history of use, ease of application, types of cleaisiincluded in the constituent array, and
feasibility for revision should be considered wisetecting the SQG approach to be used. For
instance, the Consensus and SQGQ1 approachesonatarja lesser number of chemicals than
the other approaches and it is difficult to add memtaminants of concern because the SQGs are
dependent on the availability of values from otbmurces. Local calibration is also not feasible
for these approaches for the same reason.

10
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The best performing index, CA LRM, is highly ameleato revision as demonstrated by this
study. But LRM approaches are also the most diffim apply and interpret because a complex
set of regressions must be used to determine pittiiesbof toxicity, rather than comparing
chemistry data to a simple table of SQG valueseséHdifficulties can be overcome by
incorporating the regression calculations into agshkeets or other data analysis tools and
establishing thresholds for interpreting thg,Rralues.

11
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Table 1. Chemical values for individual sediment q
Values for the effects range median (ERM) were take
quality guideline quotient (SQGQ1) values taken fro
effect concentration values taken from Swartz, 1999
2005. Concentrations are on a dry weight basis exc

uality guidelines used for data analyses.

n from Long et al. 1995. Mean sediment

m Fairey et al. 2001. Consensus midpoint

; MacDonald et al. 2000; and Vidal and Bay
ept where noted.

CA SoCA | NorCA
Chemical Units ERM ERM ERM ERM [|SQGQ1|Consensus
Arsenic mg/kg 70.0 19.2 19.1 55.0
Cadmium mg/kg 9.6 1.0 1.2 0.6 4.2 5.9
Chromium mg/kg 370.0f 154.0 110 291.0 224.9
Copper mg/kg 270.0 151.0 208 91.2 270 225.0
Lead mg/kg 218.0 87.4 94.5 56.4| 112.2 222.3
Mercury mg/kg 0.71 0.8 0.8 0.7 0.6
Nickel mg/kg 51.6 83.5 42 67.6
Silver mg/kg 3.7 0.9 1.1 0.4 1.8 3.4
Zinc mg/kg 410.0) 332.5| 406.9] 2145/ 410.0 357.1
2-Methylnaphthalene pa/kg 670.0 22.2 23.6 20.2
Acenaphthene ug/kg 500.0 23.0 24.5 19.0
Acenaphthylene ug/kg 640.0 26.0 47 19.8
Anthracene ug/kg 1,100.0f 130.0, 215.5 60.8
Benzo(a)anthracene ug/kg 1,600.0f 356.6 540/ 169.5
Benzo(a)pyrene ug/kg 1,600.0f 405.5 630, 225.3
Chrysene ug/kg 2,800.0f 577.0] 739.9] 239.0
Dibenz(a,h)anthracene  |ug/kg 260.0 94.4 130 23.4
Dieldrin pa/kg 8.0 2.0 2 0.8 8.0 7.0
Fluoranthene pa/kg 5,100.0f 432.3 723]  410.9
Fluorene pa/kg 540.0 30.7 46.2 NA
Naphthalene pa/kg 2,100.0 34.4 33.4 42.5
p,p’-DDE pa/kg 25.9 38.3 3.8
Phenanthrene ug/kg 1,500.0f 267.5] 275.9] 310.6
Pyrene ug/kg 2,600.0) 534.8/ 1,000 480.0
Total Chlordane ug/kg NA 17.2 23.1 4.0 6.0
Total DDTs ug/kg 46.1 49.3 60 13.1 25.4
Total PAHs ug/kg 1,800.0* 1,800.0*
Total PCBs pa/kg 180.0 111.5| 1254 21.3] 400.0 0.47
Tributyltin pa/kg 202.0 308 30.0

* ng/g organic carbon basis
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Table 2. Logistic Regression parameters for the re  gional and national models compared in this study. National values were taken from
Field et al., 2002. BO=intercept; B1=slope; T50=calculated co ncentration corresponding to a toxicity probability of 0.5. Concentrations
are on a dry weight basis.

LRM CALRM SoCA LRM NorCA LRM

Chemical Units BO Bl T50 BO Bl T50 BO Bl T50 BO Bl T50
Cadmium mag/kg -0.34 251 14 0.29 3.18 0.8 029 318 081 154 3.43 0.36
Copper mg/kg -5.59 2.59 145 -6.76 2.78 268 -6.58 3.84 51
Lead mg/kg -5.45 277 94  -472 284 46 -8.64 4.82 62
Mercury mg/kg -0.06 2.68 11 1.65 3.05 0.29
Nickel mg/kg -8.46 5.70 30
Zinc mag/kg -7.98 334 245 513 242 132 -9.95 4.20 234 -13.77 6.88 100
1-Methylnaphthalene pa/kg -4.14 2.10 94
1-Methylphenanthrene pa/kg -3.59 1.75 112
2,6-Dimethylnaphthalene ug/kg -4.05 190 133
2-Methylnaphthalene pa/kg -3.76 1.78 128
Acenaphthene pa/kg -3.62 1.75 116
Acenaphthylene pa/kg -2.96 1.38 140
Benzo(a)pyrene pa/kg -2.27 1.19 80
Benzo(b)fluoranthene pa/kg -4.54 149 1107 -4.56 2.33 20
Biphenyl pa/kg -4.11 221 73
Chlordane, alpha- pa/kg -3.41 4.46 5.8 -3.41 4.46 5.8
Chlordane, gamma- pa/kg -3.64 4.18 7.4
Chrysene pa/kg -2.54 1.28 95
Dieldrin pa/kg -1.17 2.56 29 -1.83 259 51 -1.24 4.25 2.0
Fluoranthene pa/kg -4.46 1.48 1034
Fluorene pa/kg -3.71 181 114
HMW PAH pg/kg -8.19 2.00 12506 -8.19 2.00 12506 -4.26 1.47 785.2
LMW PAH pa/kg -6.81 1.88 4127 -6.81 1.88 4127 -3.37 1.49 185.2
Naphthalene pa/kg -3.78 162 217
Nonachlor trans pa/kg -4.26 5.31 6.3 -4.26 531 6.3
o,p'-DDD pa/kg -2.01 3.29 4.1 1.07 201 0.3
p,p'-DDD pg/kg -1.90 1.49 19 -1.76 2.00 7.6 -0.76 245 20
p,p'-DDT pa/kg -3.55 3.26 12 -1.45 1.60 8.1 -0.55 331 15
Phenanthrene pa/kg -4.46 1.68 455
Total DDTs pa/kg -1.33 275 3.0
Total PCBs pg/kg -346 135 368 -441 1.48 945 -4.41 1.48 945 -441 1.48 945
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or the California samples used in the analysis.

Northern California

Southern California

50th goth 50th goth
Chemical Units N Percentile Percentile N Percentile  Percentile
2-Methylnaphthalene pa/kg 367 10.6 27.2 713 9.6 49.1
Acenaphthene pg/kg 407 6.0 21.2 674 5.1 46.0
Acenaphthylene pg/kg 398 8.2 24.3 671 6.2 79.0
Anthracene pg/kg 422 20.2 91.1 771 18.0 370
Arsenic mg/kg 393 8.5 12.9 828 8.6 17.3
Benz(a)anthracene pg/kg 427 63.8 189 838 44.9 720
Benzo(a)pyrene pg/kg 430 95.7 289 845 65.9 1100
Cadmium mg/kg 420 0.2 0.4 850 0.4 1.4
Chlordanes, total pg/kg 404 0.8 3.3 816 7.1 34.3
Chromium mg/kg 329 122 245 851 56 95
Chrysene pa/kg 427 72 229 847 64 1090
Copper mg/kg 405 40.1 65.5 851 76.5 252
DDTs, total pg/kg 404 3.6 12.4 816 21.4 112
Dibenz(a,h)anthracene pg/kg 412 121 325 787 19.1 230
Dieldrin po/kg 368 0.2 0.9 297 1.0 3.4
Fluoranthene po/kg 425 151 423 849 89.9 1320
Fluorene po/kg 414 9.3 34.4 708 6.9 77.5
Lead mg/kg 409 21.2 37.8 851 35.9 101
Mercury mg/kg 430 0.3 0.4 843 0.2 0.9
Naphthalene pa/kg 365 20.9 51.2 733 9.4 44.3
Nickel mg/kg 399 84.0 114.6 838 20.7 36.6
PCB, total pg/kg 351 7.9 32.0 851 24.8 196.2
Phenanthrene pg/kg 392 75.4 242 815 39.8 429
Pyrene pg/kg 427 190 520 850 102 1500
Silver mg/kg 418 0.2 0.5 839 0.4 1.4
PAHSs, total pg/lkg 431 945 2492 851 619 8573
Zinc mg/kg 409 110 164 851 180 369
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Figure 1. Distribution of sediment toxicity data ( 10-day amphipod mortality) for the California
samples used in the analysis.
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Table 4. Thresholds used for evaluations of SGQ in  dex classification accuracy. Nontoxic: <Low
threshold; Low Toxicity: Low threshold - <Moderate threshold; Moderate Toxicity: Moderate
threshold - <High threshold; High toxicity: >High t hreshold.

Low Threshold Moderate Threshold High Threshold
SQG
Approach Index North  South State North South State North South  State
National ERM _Mean 0.08 0.06 0.07 0.15 012 013 0.29 0.38 0.33
Quotient
National LRM Maximum .5 g3 54 026 044 035 050 0.61 0.5
Probability
Mean
Consensus ; 015 0.14 0.14 023 026 025 051 060 055
Quotient
SQGQ1 Mean 006 016 0.10 011 034 0.19 033 0.80 052
Quotient . . . . . . . . .
CA LRM Maximum o0 645 (.34 042 058 050 0.62 072 0.67
Probability
Mean
CA ERM 015 0.14 0.5 023 025 024 068 1.28 0.93

Quotient
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Table 5. Nonparametric Spearman correlation (r) an  d classification accuracy of statewide SQG
approaches with amphipod mortality. Values in the shaded cells are within the 90 ™ percentile of
the highest median value for the bootstrapped analy  ses. Analyses were conducted on the
combined data for the north and south validation da ta sets and used thresholds developed using
the statewide data set.

Weighted

Region Approach Kappa % Agreement r
State CALRM 0.23 37 0.35
State National ERM 0.17 32 0.25
State Consensus 0.17 31 0.25
State National LRM 0.15 35 0.22
State CA ERM 0.17 33 0.20
State SQGQ1 0.12 32 0.16
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Table 6. Classification accuracy and Spearman corr  elation of SQG approaches applied to data
from each region separately. Values in the shaded cells are within the 90 " percentile of the
highest median value of the bootstrapped analyses. Analyses were conducted separately using
thresholds developed with statewide and region-spec ific data sets.

Northern California Southern California
Weighted % Weighted %
Approach Kappa Agreement r Kappa Agreement r

Statewide Thresholds

CALRM 0.20 38 0.39 0.25 35 0.42
National ERM 0.12 27 0.31 0.21 38 0.28
Consensus 0.12 28 0.23 0.22 36 0.31
National LRM 0.11 35 0.18 0.18 34 0.33
CA ERM 0.21 33 0.22 0.15 34 0.18
SQGQ1 0.13 35 0.25 0.10 28 0.26

Region-specific Thresholds

CALRM 0.16 27 0.39 0.28 40 0.42
National ERM 0.17 30 0.31 0.22 38 0.28
Consensus 0.15 29 0.23 0.25 39 0.31
National LRM 0.20 33 0.15 0.22 36 0.33
CA ERM 0.21 33 0.22 0.13 33 0.18
SQGQ1 0.21 33 0.25 0.18 33 0.26
Nor/SoCA LRM 0.21 33 0.27 0.22 36 0.37
Nor/SoCA ERM 0.20 35 0.22 0.18 35 0.18
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